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The influence of the internal properties of deformable suspended particles on the 
flow of suspensions in plane channels is investigated. 

Rheological equations of state of dilute suspensions of deformable particles, modeled 
by an ellipsoid of revolution possessing viscosity and elasticity, were obtained in [i] under 
the assumption that the dispersion medium is a Newtonian liquid while the particles are small, 

and, by virtue of this, subject to Brownian motion. The peculiarities of the rheologica! 
behavior of such suspensions in simple shear flow were investigated in [2]. 

The peculiarities of the established laminar flow of a suspension [i] in a plane channel 
are investigated below. 

The variability of the shear velocity and the presence of solid boundaries in the flow 
can result in a number of effects complicating the investigation: migration of the suspended 

particles, the appearance of secondary flows, disruption of attachment conditions, and a 
change in the form of the theological equations of state near the wall are possible. 

Migration of suspended particles in the flow will be absent if the inequality [3, 4] 

( 2ref)2 refV ~10-~ 
h 

is satisfied. 

The analysis of particle motion near a wall carried out in [5] showed that the correc- 
tions which need to be introduced into the rheological equations of state of a suspension 
near a wall and the slip velocity have the order O(ref/h), and therefore they will be omitted 
in the future and the attachment condition will be adopted at a solid wall as in classical 
fluid mechanics. As for secondary flows, they are absent in the flow of dilute suspensions 
in plane channels, as shown in [6]. 

Thus, if the suspended particles are small enough, the flow of a suspension in a channel 
will be quasi-one-dimensional (laminar) : 

v~ : O, v~, = v (x ) ,  v~ : O. ( 1 )  

Since the maximum size of a suspended particle is considerably less than the minimum 

radius of curvature of the velocity profile v(x), at each point of the stream a particle be- 
haves as in simple shear flow with a shear velocity K = Idv/dxl, which is confirmed experi- 
mentally [7]. This permits the use of the dependence of the components of the stress tensor 

on the shear velocity, established in [i] (for simple shear flow), to investigate the laminar 
flow of a suspension in a plane channel. They contain terms which must be averaged using 

the distribution function for the angular positions and lengths of the axis of symmetry of a 
particle, and the main difficulties in the analysis of concrete flows consist in finding this 
function satisfying a very complicated diffusion equation [i, 2]. If the particle deformations 
due to hydrodynamic forces are small compared with the average Brownian deformations, the 
averaging can be carried out first over the ensemble of angular positions of a suspended 
particle, assumed to be rigid, and then over the ensemble of possible elongations of the 
suspended particle [8]. 

T. G. Shevchenko State University, Kiev. Translated from Inzhenerno-Fizicheskii Zhurnal, 
Vol. 43, No. 4, pp. 560-565, October, 1982. Original article submitted July 6, 1981. 

0022-0841/82/4304-1079507.50 �9 1983 Plenum Publishing Corporation 1079 



The components of the stress tensor for a suspension, after averaging over the ensemble 

of angular positions of the particle using the distribution function defined in [9], take the 
form [2] 
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are functions of q defined in [i0]; anm ~ and bnm ~ are coefficients found from a system of 
,J ,J 

recurrent equations as functions of the parameters q and o [9]; the symbol < > denotes aver- 
aging over the possible elongations of the particle's axis of symmetry using a distribution 
function F satisfying the equation 

__kT~n2  d2F ( dn 2 --~ ~ l n - - 4 k T n ~ 5 - -  

with the boundary conditions 

kTt# d - - -  "}- |3%~ @ n.  �9 F = 0 (3) 
dn 

F(nl---)-0 a s  n--+O, F(n)---~O as n--+oo 
(4) 

1080 



and the normalization condition. Here n is the length of the semiaxis of symmetry of the 
ellipsoidal particle; 

2ab~Ca/ao (i -- qo/q) 3~o 
%1 = -- " ~~ -= 

A solution of Eq. (3) satisfying the conditions (4) was obtained in [2] and has the form 

A is determined from the normalization condition. 

We represent the components of the stress tensor in the form 

tx~=--p+t~ . . . . .  tuv= --p+t~y t~z=--P+t*, (5) 

and then on the basis of the stress-dynamic equations and (5) we obtain the equations 

dt~x = --OP dt~v _ Op (6) 
dx Ox ' dx 8g 

It follows from (6) that the pressure drop along the channel is constant, 3p/3y = const, 
but, in contrast to a Newtonian liquid, the pressure varies across the channel, 3p/3x # 0. 

We introduce the apparent viscosity of the suspension, 

~ I~[ 1 K  + cI)Sxv( q~ b'q' G" o')], (7) 

where Sxy is a function, known from the solution of the problem of simple shear flow of a 

suspension, in which the constant shear velocity K is replaced by a variable shear velocity 
along the channel, Idv/dx]. 

Integrating Eqs. (6), we obtain 

p (x, v) - -  p ~o, ~) = G (x), (8) 

dv Op 
~ - x+C, (9) 

dx OF 
where C is the integration constant. From the condition of symmetry of the velocity profile 

relative to the channel axis we get C = 0. 

Changing to the dimensionless variables x = x/h and 7 = v~/(h213p/3yl) and using the 

obvious relation 

i d~ dT, F(o)--~(0)= ~ df (io) 

we obtain the solution of this problem in the parametric form 

where 

Dr > (1 -70Sxv)~7, 
K* 
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K* 1 ~ / e p l  
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(12) 

To find ~(0) we use the boundary condition VI~=o, 5 = 0 at the wall. 

Eliminating the parameter ~ from Eqs. (ii) and (12), we obtain a velocity diagram v(x); 

the pressure distribution is given by Eq. (8). 

In Fig. 1 we present the results of calculations of the functions v(x) and P(x) = [p(x, 
y) -- p(O, y)]/(~hl3p/3y I) for aqueous suspensions of deformable particles with the following 
parameters: h = 0.005 m; 3p/3y = --7.12 N/m2; T = 300~ ref = 10 -7 m; qo = 25; ~ = 0.01; 
~/~ = 10,100 G = i000. The results of calculations made for the case of a dispersion medium 
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and a suspension of rigid particles for the same values of the parameters ref , q, and ~ are 
also given here for comparison. The solid line corresponds to the flow of the dispersion 
medium, the dashed line to that of a suspension of rigid particles, and the dash--dot lines 

to that of a suspension of deformable particles: i) ~/~ = i0; 2) i00. 

As follows from Fig. la, a decrease in the internal viscosity of the particle material 
results in an increase in the flow rate of suspension through a channel cross section (for 
~/D = i00 the flow rate increases by 12% compared with the flow rate of a suspension of rigid 

particles, and for ~/~ = i0 it increases by 26%). 

It follows from Fig. ib that a decrease in the parameter ~/~, which characterizes the 
viscoelastic properties of the particle material, results in enhancement of the viscoelastic 

behavior of the suspension. 

NOTATION 

h, channel width; x, y, transverse and longitudinal coordinates; ao, bo, a, b, semiaxis 
of revolution and equatorial radius of the ellipsoidal particle in the undeformed and deformed 
states; ref , effective parEicle radius; ~, volumetric concent#ation of suspended particles in 
the suspension; ~, ~, coefficients of dynamic and kinematic viscosity of the dispersion medium; 
Vx, Vy, Vz, velocity components; K, shear velocity; tij, stress tensor; p, pressure in the 
suspension; n and G, coefficient of dynamic viscosity and shear modulus of the particle mater- 
ial; k, Boltzmann constant; T, absolute temperature; D r and fr, coefficients of rotational 
diffusion and friction of a particle. 
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KINETICS OF THE AGGREGATION OF A DILUTE, FINELY DISPERSE SYSTEM 

AT LOW SHEAR VELOCITIES 

Yu, A. Buevich and K. S. Kuvalkin UDC 541.182 

The formation of doublets of spherical particles in a shear stream due to Brownian 
motion is considered with allowance for their hydrodynamic interaction and the 
breakup of doublets with a low binding energy. 

The theological, thermo-, electro-, and magnetophysical properties of colloidal and other 
disperse systems depend very strongly on the processes of reversible and irreversible struc- 
ture formation taking place in the system. Therefore, a theore[ical investigation of such 
properties is impossible without a preliminary physical analysis both of the peculiarities of 
the occurrence of these processes under various conditions and of their influence on the 
observable properties of the system. The most important stage in the structure formation of 
a disperse system is the initial stage of its aggregation, i.e., the formation of doublets 
from single particles (singlets). Under certain conditions, doublets can subsequently grow 
through the capture of new singlets, up to the formation of small chains or round aggregates 
containing a large number of particles, which can take part as certain elementary units in 
the construction of more complicated branched structures. In dilute systems, as well as in 
systems with sufficiently weak interaction between particles, the formation just of doublets 
comprises the main observable form of structure formation, 

Brownian coagulation (or flocculation) is usually investigated on the basis of Smolukhov- 
skii's classical concepts. In doing this, the following factors are ignored or not correctly 
taken into account in the majority of reports: i) the hydrodynamic interaction between con- 
verging particles and the resulting decrease in the effective coefficient of relative Brownian 
diffusion, 2) the finiteness of the interparticle binding energy and the possibility of the 
breaku~ of doublets, and 3) the influence of the "macroscopic" (mean) motion of the system. 
Attempts to allow for the first factor were made in [i, 2], for the second in [3, 4], and for 
the third in [5]. All three factors are considered below on the example of a dilute, finely 
disperse system of single spherical particles having a central interaction potential and sus- 
pended in an incompressible liquid entrained in shear flow. 

The kinetics of the initial coagulation stage is determined by the velocity of convective 
interdiffusion of individual pairs of particies. Placing the origin of coordinates at the 
center of one of the particles, we write the Liouville equation controlling the evolution of 
the probability density ~(t, r) of finding the center of the second particle of a given pair 
near the point r at the time t, 

opl~t+ v.(pV)= o, (1) 

where the effective relative velocity of the centers of the particles can be represented in 
the form 

V.-.~. (bl~ + b~2 - -  bn - -  b~l)'F. ( 2 )  
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